$1 \quad$ a e.g. $\quad a=-2, b=1 \Rightarrow a^{2}-b^{2}=4-1=3 \Rightarrow a^{2}-b^{2}>0$

$$
\text { and } \quad a-b=-2-1=-3 \quad \Rightarrow \quad a-b<0
$$

[any negative value of a such that $|a|>|b|$]
b $7 \quad 7$ is prime and divisible by 7 [no other examples]
c e.g. $x=\sqrt{2}, y=2 \sqrt{2} \quad \Rightarrow \quad x$ and y irrational
and $x y=4$ which is rational [many other examples]
d e.g. $\quad x=-90 \Rightarrow \cos (90-|x|)^{\circ}=\cos 0=1$
and $\quad \sin x^{\circ}=\sin \left(-90^{\circ}\right)=-1 \quad$ [any - ve x except multiples of 180]
2 a true any number divisible by 6 is also divisible by 2 and \therefore not prime
$\begin{array}{llllll}\text { b } & 1 & 2 & 3 & 4 & 5 \\ 3^{n}+2 & 5 & 11 & 29 & 83 & 24\end{array}$
false e.g. $n=5 \Rightarrow 3^{n}+2=245$ which is divisible by 5 and \therefore not prime [many other examples]
c false e.g. $n=4 \Rightarrow \sqrt{n}=2$ which is rational [many other examples]
d true b divisible by $c \Rightarrow b=k c, k \in \mathbb{Z}$ a divisible by $b \Rightarrow a=l b, l \in \mathbb{Z} \Rightarrow a=k l c \quad \therefore a$ is divisible by c
$3 \quad$ a assume n^{3} odd and n even, where $n \in \mathbb{Z}^{+}$
n even $\quad \Rightarrow \quad n=2 m, m \in \mathbb{Z}$

$$
\begin{array}{ll}
\Rightarrow \quad & n^{3}=(2 m)^{3}=8 m^{3}=2\left(4 m^{3}\right) \\
& 4 m^{3} \in \mathbb{Z} \therefore n^{3} \text { even } \\
\Rightarrow & \text { contradiction } \therefore n \text { odd }
\end{array}
$$

b assume x irrational and \sqrt{x} rational

$$
\begin{aligned}
\sqrt{x} \text { rational } & \Rightarrow \quad \sqrt{x}=\frac{p}{q}, p, q \in \mathbb{Z} \\
& \Rightarrow \quad x=\frac{p^{2}}{q^{2}}, \quad p^{2}, q^{2} \in \mathbb{Z} \quad \therefore x \text { rational } \\
& \Rightarrow \quad \text { contradiction } \therefore \sqrt{x} \text { irrational }
\end{aligned}
$$

c assume $b c$ not divisible by a and b divisible by a where $a, b, c \in \mathbb{Z}$
b divisible by $a \quad \Rightarrow \quad b=k a, k \in \mathbb{Z}$

$$
\begin{aligned}
& \Rightarrow \quad b c=k a c \text { which is divisible by } a \\
& \Rightarrow \quad \text { contradiction } \therefore b \text { is not divisible by } a
\end{aligned}
$$

d assume $n^{2}-4 n$ odd and n even, where $n \in \mathbb{Z}^{+}$
n even $\quad \Rightarrow \quad n=2 m, m \in \mathbb{Z}$

$$
\begin{aligned}
& \Rightarrow \quad n^{2}-4 n=(2 m)^{2}-4(2 m)=4 m^{2}-8 m=2\left(2 m^{2}-4 m\right) \\
& \\
& 2 m^{2}-4 m \in \mathbb{Z} \therefore n^{2}-4 n \text { even } \\
& \Rightarrow \quad \text { contradiction } \therefore n \text { odd }
\end{aligned}
$$

e assume $m^{2}-n^{2}=6$, where $m, n \in \mathbb{Z}^{+}$
$m^{2}-n^{2}=6 \quad \Rightarrow \quad(m+n)(m-n)=6$
$m, n \in \mathbb{Z}^{+} \quad \Rightarrow \quad(m+n),(m-n) \in \mathbb{Z},(m+n)>(m-n)$ and $(m+n)>0$
$\therefore \quad m+n=6$ and $m-n=1 \quad$ or $\quad m+n=3$ and $m-n=2$
adding
$\Rightarrow \quad 2 m=7$
or $2 m=5$
$\Rightarrow \quad m=\frac{7}{2} \quad$ or $\quad m=\frac{5}{2} \quad \Rightarrow \quad m$ not an integer
\Rightarrow contradiction \therefore no positive integer solutions

4 a assume $x^{2}+y^{2}$ divisible by 4 and x, y odd integers

$$
\begin{aligned}
& x, y \text { odd } \quad \Rightarrow \quad x=2 m+1, m \in \mathbb{Z} \text { and } y=2 n+1, n \in \mathbb{Z} \\
& \Rightarrow \quad x^{2}+y^{2}=(2 m+1)^{2}+(2 n+1)^{2} \\
&=4 m^{2}+4 m+1+4 n^{2}+4 n+1 \\
&=4\left(m^{2}+m+n^{2}+n\right)+2
\end{aligned}
$$

b assume $x^{2}+y^{2}$ divisible by $4, x$ odd integer and y even integer
x odd, y even $\Rightarrow x=2 m+1, m \in \mathbb{Z}$ and $y=2 n, n \in \mathbb{Z}$

$$
\begin{aligned}
& \Rightarrow \quad x^{2}+y^{2}=(2 m+1)^{2}+(2 n)^{2} \\
&=4 m^{2}+4 m+1+4 n^{2} \\
&=4\left(m^{2}+m+n^{2}\right)+1 \\
& m^{2}+m+n^{2} \in \mathbb{Z} \quad \therefore x^{2}+y^{2} \text { not divisible by } 4 \\
& \Rightarrow \quad \text { contradiction } \quad \therefore x \text { odd and } y \text { even not possible }
\end{aligned}
$$

same argument applies with x even and y odd
part a shows x and y can't both be odd
$\therefore x$ and y both even
5 a false e.g. $a=2, b=4 \Rightarrow \log _{a} b=2$ which is rational [many other examples]
b true $(2 n+1)$ and $(2 n+3), n \in \mathbb{Z}$ represent any two consecutive odd integers

$$
\begin{aligned}
(2 n+3)^{2}-(2 n+1)^{2} & =4 n^{2}+12 n+9-\left(4 n^{2}+4 n+1\right) \\
& =8 n+8 \\
& =8(n+1)
\end{aligned}
$$

$n+1 \in \mathbb{Z} \quad \therefore$ difference is divisible by 8
c false e.g. $n=13 \Rightarrow n^{2}+3 n+13=13(13+3+1)$ which is divisible by 13 [many other examples]
d true $x^{2}-2 y(x-y)=x^{2}-2 x y+2 y^{2}$

$$
\begin{aligned}
& =x^{2}-2 x y+y^{2}+y^{2} \\
& =(x-y)^{2}+y^{2}
\end{aligned}
$$

for real x and $y,(x-y)^{2} \geq 0$ and $y^{2} \geq 0 \therefore x^{2}-2 y(x-y) \geq 0$
a $\sqrt{2}=\frac{p}{q}, p, q \in \mathbb{Z} \Rightarrow 2=\frac{p^{2}}{q^{2}} \Rightarrow \quad p^{2}=2 q^{2}$
$\Rightarrow \quad p^{2}$ even $\Rightarrow \quad p$ even
b assume $\sqrt{2}$ rational $\Rightarrow \sqrt{2}=\frac{p}{q}, p, q \in \mathbb{Z}$ and p, q co-prime
part $\mathbf{a} \Rightarrow p$ even $\Rightarrow p=2 n, n \in \mathbb{Z}$
$\Rightarrow \quad(2 n)^{2}=2 q^{2}$
$\Rightarrow \quad q^{2}=2 n^{2}$
$\Rightarrow \quad q^{2}$ even $\Rightarrow \quad q$ even
$\Rightarrow \quad p$ and q both even \therefore not co-prime
\Rightarrow contradiction $\therefore \sqrt{2}$ is irrational

