Proof Answers

1 a e.g.
$$a = -2$$
, $b = 1$ \Rightarrow $a^2 - b^2 = 4 - 1 = 3$ \Rightarrow $a^2 - b^2 > 0$ and $a - b = -2 - 1 = -3$ \Rightarrow $a - b < 0$

[any negative value of a such that |a| > |b|]

- **b** 7 7 is prime and divisible by 7 [no other examples]
- **c** e.g. $x = \sqrt{2}$, $y = 2\sqrt{2}$ \Rightarrow x and y irrational and xy = 4 which is rational [many other examples]
- **d** e.g. x = -90 \Rightarrow $\cos (90 |x|)^\circ = \cos 0 = 1$ and $\sin x^\circ = \sin (-90^\circ) = -1$ [any -ve x except multiples of 180]
- a true any number divisible by 6 is also divisible by 2 and ∴ not prime
 - **b** n 1 2 3 4 5 $3^n + 2$ 5 11 29 83 245

false e.g. $n = 5 \implies 3^n + 2 = 245$ which is divisible by 5 and \therefore not prime [many other examples]

- **c** false e.g. n = 4 \Rightarrow $\sqrt{n} = 2$ which is rational [many other examples]
- **d** true b divisible by $c \Rightarrow b = kc$, $k \in \mathbb{Z}$ a divisible by $b \Rightarrow a = lb$, $l \in \mathbb{Z} \Rightarrow a = klc$ \therefore a is divisible by c
- **3** a assume n^3 odd and n even, where $n \in \mathbb{Z}^+$

$$n \text{ even}$$
 \Rightarrow $n = 2m, m \in \mathbb{Z}$
 \Rightarrow $n^3 = (2m)^3 = 8m^3 = 2(4m^3)$
 $4m^3 \in \mathbb{Z} : n^3 \text{ even}$
 \Rightarrow contradiction $\therefore n \text{ odd}$

b assume *x* irrational and \sqrt{x} rational

$$\sqrt{x}$$
 rational $\Rightarrow \sqrt{x} = \frac{p}{q}, \ p, q \in \mathbb{Z}$
 $\Rightarrow x = \frac{p^2}{q^2}, \ p^2, q^2 \in \mathbb{Z} \therefore x \text{ rational}$
 $\Rightarrow \text{contradiction } \therefore \sqrt{x} \text{ irrational}$

c assume bc not divisible by a and b divisible by a where $a, b, c \in \mathbb{Z}$

b divisible by $a \implies b = ka, k \in \mathbb{Z}$

 \Rightarrow bc = kac which is divisible by a

- \Rightarrow contradiction : b is not divisible by a
- **d** assume $n^2 4n$ odd and n even, where $n \in \mathbb{Z}^+$

$$n \text{ even}$$
 \Rightarrow $n = 2m, m \in \mathbb{Z}$
 \Rightarrow $n^2 - 4n = (2m)^2 - 4(2m) = 4m^2 - 8m = 2(2m^2 - 4m)$
 $2m^2 - 4m \in \mathbb{Z}$ $\therefore n^2 - 4n \text{ even}$
 \Rightarrow contradiction $\therefore n \text{ odd}$

e assume $m^2 - n^2 = 6$, where $m, n \in \mathbb{Z}^+$

 $m^2 - n^2 = 6 \qquad \Rightarrow \qquad (m+n)(m-n) = 6$

 $m, n \in \mathbb{Z}^+$ \Rightarrow $(m+n), (m-n) \in \mathbb{Z}, (m+n) > (m-n) \text{ and } (m+n) > 0$

 $\therefore m+n=6 \text{ and } m-n=1 \text{ or } m+n=3 \text{ and } m-n=2$

adding
$$\Rightarrow 2m = 7$$
 or $2m = 5$ $\Rightarrow m = \frac{7}{2}$ or $m = \frac{5}{2}$ $\Rightarrow m$ not an integer

 \Rightarrow contradiction : no positive integer solutions

Proof Answers page 2

4 a assume $x^2 + y^2$ divisible by 4 and x, y odd integers

$$x, y \text{ odd}$$
 \Rightarrow $x = 2m + 1, m \in \mathbb{Z} \text{ and } y = 2n + 1, n \in \mathbb{Z}$
 \Rightarrow $x^2 + y^2 = (2m + 1)^2 + (2n + 1)^2$
 $= 4m^2 + 4m + 1 + 4n^2 + 4n + 1$
 $= 4(m^2 + m + n^2 + n) + 2$
 $m^2 + m + n^2 + n \in \mathbb{Z}$ $\therefore x^2 + y^2 \text{ not divisible by 4}$
 \Rightarrow contradiction $\therefore x \text{ and } y \text{ not both odd}$

b assume $x^2 + y^2$ divisible by 4, x odd integer and y even integer

$$x$$
 odd, y even $\Rightarrow x = 2m + 1, m \in \mathbb{Z}$ and $y = 2n, n \in \mathbb{Z}$
 $\Rightarrow x^2 + y^2 = (2m + 1)^2 + (2n)^2$
 $= 4m^2 + 4m + 1 + 4n^2$
 $= 4(m^2 + m + n^2) + 1$
 $= 4m^2 + m + n^2 \in \mathbb{Z}$ $\therefore x^2 + y^2$ not divisible by 4
 \Rightarrow contradiction $\therefore x$ odd and y even not possible

same argument applies with x even and y odd part \mathbf{a} shows x and y can't both be odd

 \therefore x and y both even

- 5 **a** false e.g. a = 2, b = 4 \Rightarrow $\log_a b = 2$ which is rational [many other examples]
 - **b** true (2n+1) and (2n+3), $n \in \mathbb{Z}$ represent any two consecutive odd integers $(2n+3)^2 (2n+1)^2 = 4n^2 + 12n + 9 (4n^2 + 4n + 1)$ = 8n + 8= 8(n+1)

 $n+1 \in \mathbb{Z}$: difference is divisible by 8

c false e.g. $n = 13 \implies n^2 + 3n + 13 = 13(13 + 3 + 1)$ which is divisible by 13 [many other examples]

d true
$$x^2 - 2y(x - y) = x^2 - 2xy + 2y^2$$

= $x^2 - 2xy + y^2 + y^2$
= $(x - y)^2 + y^2$
for real x and y, $(x - y)^2 \ge 0$ and $y^2 \ge 0$: $x^2 - 2y(x - y) \ge 0$

6 a
$$\sqrt{2} = \frac{p}{q}$$
, $p, q \in \mathbb{Z}$ \Rightarrow $2 = \frac{p^2}{q^2}$ \Rightarrow $p^2 = 2q^2$ \Rightarrow $p^2 \text{ even}$ \Rightarrow $p \text{ even}$

b assume
$$\sqrt{2}$$
 rational \Rightarrow $\sqrt{2} = \frac{p}{q}$, $p, q \in \mathbb{Z}$ and p, q co-prime

part
$$\mathbf{a}$$
 \Rightarrow p even \Rightarrow $p = 2n, n \in \mathbb{Z}$
 \Rightarrow $(2n)^2 = 2q^2$
 \Rightarrow $q^2 = 2n^2$
 \Rightarrow q^2 even \Rightarrow q even
 \Rightarrow p and q both even \therefore not co-prime
 \Rightarrow contradiction $\therefore \sqrt{2}$ is irrational